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E Q U A T I O N S  

In th is  paper  we c l a s s i f y  the pa r t i a l l y  invar ian t  so lut ions  of r ank  fi = 1 and i n v a r i a n c e  d e -  
fec t  6 = 1 of the s y s t e m  of equat ions  of two-d imens iona l  g a s d y n a m i c s .  

1. A group  c l a s s i f i ca t i on  of  the equat ions  of  g a s d y n a m i c s  acco rd ing  to the  funct ion p = f ( p ,  S), s p e c i -  
fying the equat ion of  s ta te ,  was  c a r r i e d  out  in [1]. In this  pape r  we c o n s i d e r  the  s y s t e m  of d i f ferent ia l  e q u a -  
t ions  of two-d im e ns i ona l  g a s d y n a m i c s  

du / dt + p-l~p = 0 (d / dt = O / Ot -[- u.~)! 
d p / d t +  p d i v u =  0, d p / d t +  pc ~ d i v u =  0 (c ~ = 0//0p) (i.i) 

Here ,  p is the p r e s s u r e ,  p is the densi ty ,  S is the en t ropy ,  and u = (u, v) is the ve loc i t y  vec to r ;  they 
a r e  all  r e q u i r e d  funct ions  of  the independent  v a r i a b l e s  x, y, and t. With f (p, S) a r b i t r a r y ,  the wides t  Lie  
g roup  of  point  t r a n s f o r m a t i o n s  for  s y s t e m  (1.1) is of o r d e r  seven,  and the bas i s  of  the  c o r r e s p o n d i n g  Lie  
a l g e b r a  L 7 c o n s i s t s  of  the o p e r a t o r s  [1] 

0 0 0 
x 1 - -  ot , x 2 =  ox , x a =  Oy 

o o o o 
x~ = t-X; + ,-~u , x~ = t -~v + -hV 

o o o o o o o 
x ~ = t - ~  + ~ - ~  +V  ~y , X ~ = y ~ - - ~ - ~ y  + v - 5 ~ - ~  ~ 

(1.2) 

A knowledge  of  the group admi t t ed  by a s y s t e m  of d i f ferent ia l  equat ions  enables  i ts  invar ian t  and 
p a r t i a l l y  invar ian t  so lu t ions  to be i sola ted .  Our a im in this  pape r  is to c l a s s i fy  all  the pa r t i a l l y  invar ian t  
so lu t ions  of  r a n k  fi = 1 and i nva r i ance  defec t  5 = 1. H e r e ,  fl = 1 impl ies  that  t h e r e  a r e  four  funct ions ( in -  
v a r i a n t s  of  the  t h r e e - p a r a m e t e r  subgroup)  such that  t h r ee  of  t hem a r e  e x p r e s s i b l e  in t e r m s  of  the four th .  ' 
A defect  6 = 1 impl ies ,  in genera l ,  tha t  the obta ined solut ions  conta in  one a r b i t r a r y  function.  Simple  waves  
belong to this  type  of  solut ion,  so that  we in fac t  d e s c r i b e  as  s i m p l e - w a v e  type solut ions  the pa r t i a l l y  in -  
v a r i a n t  so lut ions  of  r a n k  /3 = i and i n v a r i a n c e  defec t  5 = 1. In a c c o r d a n c e  with [2], such solut ions  m u s t  be 
c o n s t r u c t e d  in t h i r d - o r d e r  subgroups .  A s y s t e m  of c l a s s e s  of d i s s i m i l a r  t h i r d - o r d e r  subgroups  was  found 
in [2], which m a y  be r e d u c e d  for  computa t iona l  conven ience  to twenty  d i f fe ren t  types  of  c l a s s .  The r e l e v a n t  
table  is g iven below. 

T A B L E  1 

t X~ 
2 X~ 
3 Xl 
4 X~ 
5 X~ 
6 X~ 
7 X~ 
8 X~ 
9 Xe 

t0 X~ 

Operators 

X2 
X~ 
X~ 
X~ 
X6 
X3- 
Xs 
X8 
Xs 
X3 

X3 
X4 
Xs + X4 
X6 + aX4 
X: 
X, + aX6 
X1 + X7 
X1 + X5 
Xa 
X6 + ~zX~ 

ti I X2 t2 X2 
13 X2 
t4 X~ 
t5 X4 
16 / X4 
17 X4 
18 X~ 
19 X~ 4- X5 
20 X~ 4- X5 

Operators 

X4 
X4 
X4 
X~ 4- X4 
X5 
X5 
X5 
X34- ctX~ 
X7 
X3 

X6 + aX~ 
X1 + X5 
Xs 
X1 + X.~ 
X~ 4- aX6 
X2 4- X74- a_~'~ 
X6 
X6 + aXv 
X8 -- X4 
X4 + aXe 
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The algorithm descr ibed in [1] was used for obtaining the part ia l ly  invariant solutions. By means of 
this algorithm, the initial sys tem (1.1) is split into a sys tem (1.1)/14, in which only invariants appear, and a 
pass ive  sys tem P, which includes invariants and paramet r i c  functions. Of the solutions obtained, those are  
eliminated which can be obtained as invariant  solutions of the same rank fl = 1; the problem of finding these 
latter is much simpler.  In the case in which part ial ly invariant  solutions can be obtained as invariant solu-  
tions can be obtained as invariant solutions, reduction of the par t ia l ly  invariant to invariant solutions is 
tions, reduction of the par t ia l ly  invariant to invariant solutions is said to take place.  For f i r s t - o rde r  sys -  
tems,  sufficient conditions for reduction are  given by the following theorem, f rom Ovsyannikov. 

Theorem.  If expressions for all the f i r s t -o rde r  derivatives of the pa ramet r i c  functions can be ob-  
tained from the passive system,  then there  exists, for every  part ial ly invariantH-solution,  a subgroup 
H'  c H such that this solution is an invariant  H' -solut ion of the same rank. 

2. The only solutions of in teres t  are  those in which the p r e s s u r e  is not identically constant, since 
the general  solution of sys tem (1.1) can be found when p ~ const. The following resul t s  may be obtained 
for  the s imple-wave type solutions: 

2.1. As in the case of simple waves, only isentropic part ial ly invariant solutions exist, not reducible 
to invariant solutions. A s imilar  p roper ty  was proved by Ovsyannikov for double waves [3]; 

2.2. Let  I ~" (T = 1, . . . ,  4) denote the complete set of invariants of a t h r ee -pa r ame te r  subgroup and 
let h be the rank of the Jacobian of the functions I T with r e spec t  to the var iables  u, v, p, and p. Since the 
p r e s s u r e  p and density p are  invariants of the group admitted by sys tem (1.1) with f (p, S) a rb i t ra ry ,  it 
is obvious that h can only take the values 3 and 4. The following resul t  holds for all par t ia l ly  invariant 
solutions of rank fi = 1 and invariance defect 5 = 1, apar t  f rom simple waves: if h = 4, then i r reducible  
par t ia l ly  invariant solutions can only exist for special equations of state; and on the contrary ,  if h = 3, i r r e -  
ducible solutions of the s imple-wave type exist for any function f(p). 

3. Our resul ts  are  summar ized  below. The following notation is employed: a, b, co, a ,  u0, v0, P0, P0 
are  a rb i t r a ry  constants,  and 4~ is an a rb i t r a ry  function. The numbers of the solutions are  the same as the 
subgroup numbers  in the table. 

3ol. 
here.  

3.2. 
19, and 20. 

Notice that the following three subclasses  can be isolated in the c lass  of i r reducible  simple wave type 
solutions: 

a) solutions in which the equation of state p = f (p) is a rb i t ra ry ,  u(t, x, y) is l inear in the var iable  x, 
and v and p a re  in general  functions of the var iables  t and y; 

b) solutions in which the equation of state is a rb i t ra ry ,  but u (t, x, y) is a nonlinear vector  function in 
all the independent var iables;  

c) solutions with a special  equation of state; solutions of subclass  a) exist in subgroups 2, 9, 11, and 
12, and are  as follows. 

3.3. Solution 2. Let 

Solution 1 consis ts  of simple waves. It has been investigated in detail and need notbe considered 

There  are  no i r reducible  solutions of the simple wave type in subgroups 5, 6, 10, 13, 16 (a  ~ 0), 

/ r @'~I/2 t dp, 
,(p)= + 7  

p b 

Then this solution is such that the p = p (y) is implicit ly defined by 

u = c0~ (p) 

while the functions u ( t ,x ,y )  and v(y) a re  given in t e rms  of the known function p (y) by 

x 
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3.4. Solution 9: 

3.5. Solution 11: 

b ~ + * (y) 
p ~ t _ f _  a , v ~ O ,  u ~  t-]-a 

v = a | n t + ~ ( z ) ,  io-~p(z), z = y / t - - a l n t  

The funct ions  p(z) and w(z) a r e  found f r o m  the s y s t e m  of o r d i n a r y  equat ions  

o ' ( ~ - - z - - ~ ) +  ~ d/ 

t , 

The function u(t ,x ,  y) is r e s t o r e d  by a q u a d r a t u r e  with r e s p e c t  to the known funct ions p (z) and w(z): 

u--~-- T 0 ) ' + ~ - ( o - - z - - ~ )  +pexp c o - - z - - a  q) lnt- -  

3.6. Solution 12: 

p= p(z), v= t+o) (z )  
z = 2 y - - t  2, co=(a--C~(p)- -z )  %, V ( P ) : 2 1 ~  

is  a known function,  while p (z) sa t i s f i e s  the equat ion 

'P"'  P'~ l f(~'p'  p")] =(~'F + 

o' ~ d o /  d o , o" ~-d~a/dp2 

The  function u (t, x,  y) is r e s t o r e d  by a q u a d r a t u r e  v i a  p (z) and w(z) : 

The subc l a s s  b) c o n s i s t s  of  a s ingle  solut ion,  ob ta ined  in subgroup 15, in which, in v iew of  the i r r e -  
dueibi l i ty  condit ion,  we have  to put oz = 0. This  solut ion will  be quoted below. 

3.7.  Solution 15: 

The function 0 

t x a y a 
P - - a t + b t ~ '  u-~ T + -/-c~ V = T  +Ts inO 

is given implicitly by 

o(k,  0 -  ?) = 0 

) ~ T  +2TC~247 + 2 b T + b 2  
r sin (0 -- qD) 

7--~arctg b t + a §  ' r 2 z x  ~§ ~ a r c t g  y 

Solutions of  subc l a s s  c) ex i s t  in subgroups  3, 4, 7, 8, 14, 17, and 18, and a r e  as  fel lows.  

3.8. Solution 3: 

p = p o +  p--~---p-,  u = ~ 0 + y ,  

The function p (t, x, y) is obta ined impl i c i t l y  f r o m  

~- § bln =q~(t,  y ) - - x  

ye 
a) c~ (t, y) = ~'~ § u o y § �9 (y - -  bt) 

a 2 (l 2 a 
y ~ b - -  - -  

P 

(b =/: 0) 
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b) q~ (t, g) -- t (v + Uo) + �9 (v) (b = o) 

3.9. Solution 4: 

p = p o q  
a2 a 2 
Po P , u = a l n y + u o ,  v = b  - a--p 

T h e  f u n c t i o n  p (t, x ,  y) i s  g i v e n  i m p l i c i t l y  by 

a) 

b) 

v + b l n  , : q ~ ( t  ----y- 

a2 - ' ~  In y -ff cI) (y - -  bt) (p(t, y ) = ~ l n ~ y  + 

cot 
cp (t. y) = ~ -  (a In y -4- uo) + (P (y) (b : 0) 

(b 4 = 0) 

3.10 .  S o l u t i o n  7: 

p ~ - - ~ - e x p  - -2  , q = b e x p  -- , O = t - } - a  

T h e  f u n c t i o n  p ( r ,  G t) i s  g i v e n  i m p l i c i t l y  by 

�9 (l 2, V--  t) = 0 

1 2 ~ ~  ~, T : a r c t g ~ -  , ~=rcOs(tq-a--Cp) 

T}: rsin (t + a--ep)-- b exp ( - - p )  (~- + l) 

3 .11 .  S o l u t i o n  8: 

a 2 a s a 
p : F o q  po p , u = b - -  -~ , y ~ t  

3 .12 .  S o l u t i o n  14a: 

i 1 ,] p = co -- b~ a (b q- ap) q- -p 

t~ u0p b 
u ~ y - -  -~- q- ln ap _~ b , v = t q- a q- -~ 

T h e  f u n c t i o n  p (t, x ,  y) i s  g i v e n  i m p l i c i t l y  by 

t~ t s at z ) 
z ~ - - - ~ - - a t ,  z l - - z ~ t  + T + - ~ - - ( l n  uo+ t) t  = 0  

(b ~ _ )  b . [b + ap\ a9 
~,=~+~In - 7 '  z ~ = Y - ' n \ ~ ] - b  + ~p 

Solut ion 14b: 

1 t ~ bp 
p = c o - -  a ( l + a 9  ) , u = y - - y - } - l a ~ ,  v = t  

T h e  f u n c t i o n  p (t, x ,  y) i s  o b t a i n e d  f r o m  the  r e l a t i o n s h i p  

p 1 

w h e r e  ~o (x, t) i s  a l s o  g i v e n  in  i m p l i c i t  f o r m :  

(cp - -  l l ~ t ~ ,  x - -  top q -  112t8 - -  (In b q- i )  t) = 0 
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3.13. Solution 17a: 

u = x / t + a V~p,  v = y / t ,  p = l/sa2p~ + b 

The function p(t, x) is  given impl ic i t ly :  

(t V"p, x i t + 31~a V-p) = o 

Solution 17b: 

u = x /  t,  v =  y /  t @ a~/-'p, p = 1/sa2p2-f- b 

The function p (y, t) is  given impl i c i t l y  by 

(t V~, ~ I t + 812a V ~ )  = o 

3.14. Solution 18. An i r r educ ib l e  solut ion only  ex i s t s  when v~= 0: 

p : i/3a2p3 _L b, u = x / t -~- ap ,  v = Vo 

The funct ion p (x, t) is  given impl ic i t ly  by 

r ( tp,  x / t - f -  2ap)  = 0 

4. Examina t ion  of  the s i m p l e - w a v e  type  solut ions  showed that  so lut ions  9 and 15 can  be g e n e r a l i z e d  
if the p r e s s u r e  and dens i ty  in s y s t e m  (1.15 a r e  a s s u m e d  to depend on t ime only~ On putt ing p = p(t) and 
p = p (t) in s y s t e m  (1.1) and d iscount ing  the non isen t rop ic  c a s e  (in which the p r e s s u r e  and dens i ty  a r e  c o n -  
stant),  the fol lowing s y s t e m  of equa t ions  is obtained:  

u t § 2 4 7  u - O ,  v t + u v ~ §  v = O , t ~ ( t ) + u ~ §  v = O  (4.15 

H e r e  the notat ion y (t) =p ' /p  has  been  used  for  t ypograph ica l  s implic i ty~ Not ice  that,  on taking 
p = p(t) and p =p(t ) ,  the p a r t i a l l y  inva r i an t  solut ion of  r ank  ~ = 1 and i nva r i ance  defect  5 = 2 will  be d i s -  
c o v e r e d  f r o m  the subgroup H = (X2, X3, X4, X~).  Since the i nva r i ance  defect  6 = 2 he re ,  this  solut ion should 
d i f fer  f rom those  of  the s i m p l e - w a v e  type  in conta in ing two a r b i t r a r y  functions.  

Le t  us examine  s y s t e m  (4~ The f i r s t  two equat ions  of  the s y s t e m  can  be in teg ra ted  in the  f o r m  

x - - t u = • ( u , v ) ,  y - - t v = r  (4.25 

H e r e  ~v and r a r e  a r b i t r a r y  funct ions .  To solve  the th i rd  equation,  the  independent  v a r i a b l e s  a r e  
changed:  (x, y, t) ~ (u, v, t): It is e a s i l y  shown that ,  when it(t) = - ( t  + a) - l ,  the funct ions u and v a r e  func -  
t iona l ly  dependent .  To p rove  this ,  we d i f fe ren t i a te  the f i r s t  and s econd  equat ions  of s y s t e m  (4.15 with 
r e s p e c t  to x and y, r e spec t i ve ly ,  add the r e s u l t s ,  and then use the th i rd  equat ion of the s y s t e m :  The c a s e  

(t) = - ( t  + a ) - I  o r  p = (a + b t ) - I  (p , /p  = tt ) m u s t  t h e r e f o r e  be r e g a r d e d  as s ingular ,  in the s ense  of  the 
mapping  (x, y, t)--~ (u, v, t). On t r a n s f o r m i n g  to the v a r i a b l e s  u, v, and t, and r eca l l i ng  (4o2), the las t  equa -  
t ion of (4ol) can be wr i t t en  as  

2t  + % + ~p~ ( 4 ~  

It is  ea s i ly  shown that,  by v i r t u e  of  (4.3), t~ (t) m u s t  sa t i s fy  the equat ion 

~t" --- 3~t~t' @ Ix 8 = 0 ()~ (t) : e x p  [.-- ~txdt]) 

This  equat ion can be in t eg ra t ed  (the subst i tu t ion is shown in pa ren theses ) ,  and its solut ion is 

I~ - -  b + 2cot ( 4 . 4 )  
a -F bt -~- cot ~ 

Since #(t) =p ' / p ,  we get  the fol lowing e x p r e s s i o n  for  p(t):  

l 
p = (c. ~ O) 

a -t- bt -~- co t~ 

Subst i tut ing (4.4) fo r  t~ (t) into (4.3) and equat ing coef f i c ien t s  of  like powers  of t, we obtain the s y s t e m  
of equat ions  

q)u + ~pv = b / c o ,  epu~) v - - % ~ =  a l co ( 4 . 5 )  
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In short,  with the assumption that p = p(t) and p = p(t), we find that 

l p = (4.6) 
a -]- bt ~ cot ~ 

and when c o ~ 0 the solution of sys tem (4.1) must  be 

where the functions ~v and ~b satisfy sys tem (4.5). 

Comparing expression (4.6) for p(t) with the analogous expressions in solutions 9 and 15, it can be 
seen that the general izat ion of solution 9 will be obtained with c 0 = 0 in (4.6)~ Solution 15 can be general ized 
by putting a = 0 in (4.6). Notice that it is in prec ise ly  these cases  that complete integration of system (4.1) 
is possible.  If p = (a + bt) -1 and, in view of the functional dependence of u and v, we put v = F(u), integration 
of sys tem (4.1) gives the solution 

t 
u ~ u ( t , x , y ) ,  p - -  

a + bt (4~ 
= by + ~ a ) ( b ~ - - ~ , ( b t + ~ ) )  

F (u) = a -~- b~ a ~- bt 

Here,  ~(z) and v = F(u) a re  a rb i t r a ry  functions. If we put a = 0 (the case  of solution 15), it follows 
f rom the second of Eq. (4.5) that ~o and r a re  also functionally dependent. Putting r = F(r and integrating 
sys tem (4.5), the following solution is obtained: 

i 
z - -  tu = c~ (u , v), P = bt § cot 2 

F ( ~ )  = y - -  tv = ~ v § q) (bu - -  co~) 
Co 

(4.8) 

The functions r = F(go) and ~(z) are  a rb i t ra ry .  In solutions (4.7) and (4.8) we have an a rb i t r a ry  i sen-  
t ropic  equation of state. It was verif ied that no generalization is obtained for s imple-wave type solutions of 
subclass  a) [s imilar  to the general izat ions (4.7) and (4.8)] if we put 

u = a ( t , y )  z+b(t ,~) ,  v=v( t ,~)  
P=O(t,~), p = f ( p )  

in sys tem (1.1). 

In conclusion, it seems worth pointing out the importance of an investigation of the s imple-wave type 
solutions in the context of concrete  gasdynamic problems.  

The author thanks L. V. Ovsyannikov for his interest  and valuable advice. 
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